Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:
1st: Use the square-root method if the x-term is missing.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing. 2nd: Try factoring it into two binomials.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).
The Square-Root Method

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:
1st: Use the square-root method if the x-term is missing. 2nd: Try factoring it into two binomials. 3rd: Use the quadratic formula (QF).

The Square-Root Method
Use the square-root method if there is no x-term.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:
1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:
1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$.
II. Then $x= \pm \sqrt{d}$ are the roots.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:
1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$.
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$.
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$
$3 x^{2}-7=0 \quad$ solve for x^{2}

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$.
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$
$3 x^{2}-7=0 \quad$ solve for x^{2}
$3 x^{2}=7$
$x^{2}=\frac{7}{3}$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$.
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$
$3 x^{2}-7=0 \quad$ solve for x^{2}
$3 x^{2}=7$
$x^{2}=\frac{7}{3}$
take square root
$x= \pm \sqrt{7 / 3}$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$
$3 x^{2}-7=0 \quad$ solve for x^{2}
$3 x^{2}=7$
$x^{2}=\frac{7}{3} \quad$ take square root
$x= \pm \sqrt{7 / 3} \approx \pm 1.53$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:

1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$
$3 x^{2}-7=0 \quad$ solve for x^{2}
$3 x^{2}=7$
$x^{2}=\frac{7}{3} \quad$ take square root
$x= \pm \sqrt{7} / 3 \approx \pm 1.53$
exact answers

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

To solve $a x^{2}+b x+c=0$:
1st: Use the square-root method if the x-term is missing.
2nd: Try factoring it into two binomials.
3rd: Use the quadratic formula (QF).

The Square-Root Method

Use the square-root method if there is no x-term.
I. Solve for the x^{2} and get the form $x^{2}=d$
II. Then $x= \pm \sqrt{d}$ are the roots.

Example A. Solve $3 x^{2}-7=0$
$3 x^{2}-7=0 \quad$ solve for x^{2}
$3 x^{2}=7$
$x^{2}=\frac{7}{3} \quad$ take square root
$x= \pm \sqrt{7 / 3} \approx \pm 1.53 \longleftarrow$ approx. answers
exact answers

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$.

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.
a. $3 x^{2}-2 x+8=0$
b. $3 x^{2}-2 x-8=0$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.
a. $3 x^{2}-2 x+8=0$
b. $3 x^{2}-2 x-8=0$
$a=3, b=-2, c=8$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \quad \begin{array}{l}
=3, b=-2, c=8 \\
\text { so } b^{2}-4 a c \\
=(-2)^{2}-4(3)(8)
\end{array}
\end{aligned}
$$

$$
\text { b. } 3 x^{2}-2 x-8=0
$$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \text { b. } 3 x^{2}-2 x-8=0 \\
& a=3, b=-2, c=8 \\
& \text { so } b^{2}-4 a c \\
& =(-2)^{2}-4(3)(8) \\
& =4-96=-92
\end{aligned}
$$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

```
a. \(3 x^{2}-2 x+8=0\)
                                    b. \(3 x^{2}-2 x-8=0\)
    \(a=3, b=-2, c=8\)
    so \(b^{2}-4 a c\)
    \(=(-2)^{2}-4(3)(8)\)
    \(=4-96=-92\)
```

Not a perfect square so it's not factorable

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \begin{array}{l}
\text { a }=3, b=-2, c=8 \\
\text { so } b^{2}-4 a c \\
=(-2)^{2}-4(3)(8) \\
=4-96=-92
\end{array}
\end{aligned}
$$

$$
\text { b. } 3 x^{2}-2 x-8=0
$$

$$
a=3, b=-2, c=-8
$$

Not a perfect square so it's not factorable

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \begin{array}{l}
\text { a }=3, b=-2, c=8 \\
\text { so } b^{2}-4 a c \\
=(-2)^{2}-4(3)(8) \\
=4-96=-92
\end{array}
\end{aligned}
$$

Not a perfect square so it's not factorable

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \begin{array}{l}
\text { a }=3, b=-2, c=8 \\
\text { so } b^{2}-4 a c \\
=(-2)^{2}-4(3)(8) \\
=4-96=-92
\end{array}
\end{aligned}
$$

Not a perfect square so it's not factorable

$$
\begin{aligned}
& \text { b. } 3 x^{2}-2 x-8=0 \\
& a=3, b=-2, c=-8 \\
& b^{2}-4 a c=(-2)^{2}-4(3)(-8) \\
& =4+96=100
\end{aligned}
$$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \begin{array}{l}
\text { a }=3, b=-2, c=8 \\
\text { so } b^{2}-4 a c \\
=(-2)^{2}-4(3)(8) \\
=4-96=-92
\end{array}
\end{aligned}
$$

Not a perfect square so it's not factorable

$$
\begin{aligned}
& \text { b. } 3 x^{2}-2 x-8=0 \\
& a=3, b=-2, c=-8 \\
& b^{2}-4 a c=(-2)^{2}-4(3)(-8) \\
& =4+96=100=10^{2}
\end{aligned}
$$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.

$$
\begin{aligned}
& \text { a. } 3 x^{2}-2 x+8=0 \\
& \begin{array}{l}
\text { a }=3, b=-2, c=8 \\
\text { so } b^{2}-4 a c \\
=(-2)^{2}-4(3)(8) \\
=4-96=-92
\end{array}
\end{aligned}
$$

Not a perfect square so it's not factorable
b. $3 x^{2}-2 x-8=0$
$a=3, b=-2, c=-8$
$b^{2}-4 a c=(-2)^{2}-4(3)(-8)$
$=4+96=100=10^{2}$
So its factorable.

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.
a. $3 x^{2}-2 x+8=0$

$$
a=3, b=-2, c=8
$$

$$
\text { so } b^{2}-4 a c
$$

$$
=(-2)^{2}-4(3)(8)
$$

$$
=4-96=-92
$$

Not a perfect square so it's not factorable
b. $3 x^{2}-2 x-8=0$
$a=3, b=-2, c=-8$
$b^{2}-4 a c=(-2)^{2}-4(3)(-8)$
$=4+96=100=10^{2}$
So its factorable.
$3 x^{2}-2 x-8=0$
$(3 x+4)(x-2)=0$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Factoring Method
Factor the equation into the form $(\# x+\#)(\# x+\#)=0$. Hint: Find $b^{2}-4 a c$, if it is not a perfect square then the equation is not factorable. (perfect squares: $0,1,4,9,16, \ldots$)
Example B . Which of the following equations is factorable? Solve it by factoring if it is.
a. $3 x^{2}-2 x+8=0$

$$
a=3, b=-2, c=8
$$

$$
\text { so } b^{2}-4 a c
$$

$$
=(-2)^{2}-4(3)(8)
$$

$$
=4-96=-92
$$

Not a perfect square so it's not factorable
b. $3 x^{2}-2 x-8=0$
$a=3, b=-2, c=-8$
$b^{2}-4 a c=(-2)^{2}-4(3)(-8)$
$=4+96=100=10^{2}$
So its factorable.

$$
\begin{aligned}
& 3 x^{2}-2 x-8=0 \\
& (3 x+4)(x-2)=0 \\
& x=-4 / 3, x=2
\end{aligned}
$$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Use the quadratic formula (QF)

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 \mathrm{ac}$ is called the discriminant because its value indicates what type of roots there are.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots,

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\mathrm{b}^{2}-4 \mathrm{ac}$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\mathrm{b}^{2}-4 \mathrm{ac}$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$. Not factorable!

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

 Use the quadratic formula (QF)The roots for the equation $a x^{2}+b x+c=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 \mathrm{ac}$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$. Not factorable!
Use QF, we get
$x=\frac{-(-2) \pm \sqrt{28}}{2(3)}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$ Use the quadratic formula (QF)

The roots for the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$. Not factorable!
Use QF, we get
$x=\frac{-(-2) \pm \sqrt{28}}{2(3)}=\frac{2 \pm \sqrt{28}}{6}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$ Use the quadratic formula (QF)

The roots for the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$. Not factorable!
Use QF, we get
$x=\frac{-(-2) \pm \sqrt{28}}{2(3)}=\frac{2 \pm \sqrt{28}}{6}=\frac{2 \pm 2 \sqrt{7}}{6}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$ Use the quadratic formula (QF)

The roots for the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$. Not factorable!
Use QF, we get
$x=\frac{-(-2) \pm \sqrt{28}}{2(3)}=\frac{2 \pm \sqrt{28}}{6}=\frac{2 \pm 2 \sqrt{7}}{6}=\frac{1 \pm \sqrt{7}}{3}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$ Use the quadratic formula (QF)

The roots for the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ are
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b^{2}-4 a c$ is called the discriminant because its value indicates what type of roots there are. Specifically, if $b^{2}-4 a c$ is a perfect square, we have fractional roots, if $b^{2}-4 a c<0$ there is no real roots.

Example C. Solve $3 x^{2}-2 x-2=0$
Check if it is factorable: $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(-2)=28$. Not factorable!
Use QF, we get
$x=\frac{-(-2) \pm \sqrt{28}}{2(3)}=\frac{2 \pm \sqrt{28}}{6}=\frac{2 \pm 2 \sqrt{7}}{6}=\frac{1 \pm \sqrt{7}}{3} \approx\left\{\begin{array}{l}1.22 \\ -0.549\end{array}\right.$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable;

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So $\mathrm{b}^{2}-4 \mathrm{ac}=(-2)^{2}-4(3)(2)$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So $b^{2}-4 a c=(-2)^{2}-4(3)(2)=-20$,

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So ${ }^{2}-4 a c=(-2)^{2}-4(3)(2)=-20$,
$\sqrt{ }-20$ is not a real number, so there is no real solution.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So $\mathrm{b}^{2}-4 \mathrm{ac}=(-2)^{2}-4(3)(2)=-20$,
$\sqrt{-20}$ is not a real number, so there is no real solution.
The complex solutions are
$x=\frac{2 \pm \sqrt{ }-20}{6}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So $\mathrm{b}^{2}-4 \mathrm{ac}=(-2)^{2}-4(3)(2)=-20$,
$\sqrt{-20}$ is not a real number, so there is no real solution.
The complex solutions are
$x=\frac{2 \pm \sqrt{ }-20}{6}=\frac{2 \pm 2 \sqrt{ }-5}{6}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So $\mathrm{b}^{2}-4 \mathrm{ac}=(-2)^{2}-4(3)(2)=-20$,
$\sqrt{-20}$ is not a real number, so there is no real solution.
The complex solutions are
$x=\frac{2 \pm \sqrt{ }-20}{6}=\frac{2 \pm 2 \sqrt{ }-5}{6}=\frac{2(1 \pm i \sqrt{ } 5)}{6}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So $\mathrm{b}^{2}-4 \mathrm{ac}=(-2)^{2}-4(3)(2)=-20$,
$\sqrt{-20}$ is not a real number, so there is no real solution.
The complex solutions are
$x=\frac{2 \pm \sqrt{ }-20}{6}=\frac{2 \pm 2 \sqrt{ }-5}{6}=\frac{2(1 \pm i \sqrt{ } 5)}{6}=\frac{1 \pm i \sqrt{ } 5}{3}$

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Example D. Solve $3 x^{2}-2 x+2=0$
To check if it is factorable; $a=3, b=-2, c=-2$
So ${ }^{2}-4 \mathrm{ac}=(-2)^{2}-4(3)(2)=-20$,
$\sqrt{ }-20$ is not a real number, so there is no real solution.
The complex solutions are
$x=\frac{2 \pm \sqrt{ }-20}{6}=\frac{2 \pm 2 \sqrt{ }-5}{6}=\frac{2(1 \pm i \sqrt{ } 5)}{6}=\frac{1 \pm i \sqrt{ } 5}{3}$
$1^{\text {st }}$ and $2^{\text {nd }}$ degree equations are the most important equations in science and now we know how to solve all of them efficiently. Applications of higher degree equations are more specialized and in general we solve them using computers.

Solving 2nd Degree Equations ax ${ }^{2}+b x+c=0$

Exercise A. Solve. Use the square root methods.
Give both the exact answers and the numerical answers.
If the answer is not real, state so.

1. $3 x^{2}-12=0$
2. $3 x^{2}-15=0$
3. $3 x^{2}+15=0$
4. $x^{2}-3=-x^{2}+15$
5. $-6=4 x^{2}-15$
6. $(x-2)^{2}=2$
7. $4=(2 x-3)^{2}$

Exercise B. Solve by factoring and by the quadratic formula.
8. $x^{2}-3 x=4$
9. $x-15=2 x$
10. $x^{2}+5 x+12=0$
11. $-x^{2}-2 x+8=0 \quad 12.9-3 x-2 x^{2}=0$ 13. $2 x^{2}-x-1=0$
14. $x^{2}-3 x=10 \quad$ 15. $x(x-2)=24 \quad$ 16. $2 x^{2}=3(x+1)-1$

Exercise C. Solve by the quadratic formula.
If the answers are not real numbers, state so.
17. $x^{2}-x+1=0$
18. $x^{2}-x-1=0$
19. $x^{2}-3 x-2=0$
20. $x^{2}-2 x+3=0$
21. $2 x^{2}-3 x-1=0$
22. $3 x^{2}=2 x+3$

Solving 2nd Degree Equations $a x^{2}+b x+c=0$

Exercise C. Solve by the quadratic formula. If the answers are not real numbers, state so.
23. $2\left(x^{2}-1\right)+x=4$

$$
\text { 25. } \frac{(x-1)}{(x+2)}=\frac{2 x}{(x+2)}
$$

$$
\begin{aligned}
& \text { 24. }(x-1)(x+1)=2 x(x+2) \\
& \text { 26. } \frac{(x+1)}{(x+2)}=\frac{(x+2)}{(2 x+1)}
\end{aligned}
$$

27. Cut a stick of unit length (1) into two parts in a manner such that "the ratio of the whole to the large part is the same as the ratio of the large part to the small part" In picture,

the golden ratio $\Phi(p h i)$ is the ratio $1: \Phi$. Find the exact and approximate value of Φ. (Google "golden ratio")
